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LETTER TO THE EDITOR 

Critical dynamics below the percolation threshold 
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of Derby, Kedleston Road, Derby DE22 IGB, UK 
XCentro de Fisica da Univenidade de Porto, Faculdade de Ciencias, PraGa Gomes 
Teixeira, 4000 Porto. Portugal 

Received 4 October 1993 

Abstract. The critical dynamics of the diluted two-dimensional Ising model below the per- 
colation threshold is studied. The dynamics exhibits a crossover from a concentration- 
dependent behaviour for @>& to a percolating lattice type behaviour for {rx<,,, where 
<r and 5, are the thermal and percolation correlation lengths, respectively. As a come- 
quence, the dynamical exponents A and Bare shown to be the limits of dynamical fietiom 
A(x) and B(x), respectively; here, x=ln gp/ln<r. Extensive Monte Carlo simulations 
support our predictions. 

?e critical dynamics of disordered spin systems have attracted considerable interest 
in recent years. It is now fairly well established [I-91 that conventional dynamic scaling 
[lo] breaks down for diluted spin systems at the percolation threshold. According to 
conventional dynamic scaling, the average time, T*"(T), scales as 

In r ~ v ( T ) - Z l n  er (1) 

where Er is the thermal correlation length and 2 is a dynamic critical exponent. At p = 
p c ,  the percolation threshold, it is found the 2 is in fact a temperature-dependent 
function 

where A and B are two new dynamical exponents. Both analytic 12-4,7,8] and compu- 
tational [5,6,9] results CO* the new dynamics for Ising and Potts models at the 
percolation threshold; estimates of A and B for various two-dimensional models may 
be found in Jain [9]. Very recently, critical crossover phenomena has been reported by 
Heuer [ l l ]  who investigated site-disordered Ising systems over a large range,of dilution 
above the percolation threshold (0.6Gp G 1.0). 

In this letter we study the critical behaviour of systems below the percolation thresh- 
old (p<pc) .  We present both an'alytical and computational results. By applying the 
arguments of Harris and Stinchcombe [2], we shall show that forp<p, we have to 
introduce dynamical exponents which take the form of scaling functions, A and B being 
retrieved in appropriate limits. Furthermore, we also report the results of extensive 
Monte Carlo simulations of thetwo-dimensional king model on a square lattice with 
bond-dilution which support our analytical predictions. A preliminary account of this 
work was presented at the Vth Rencontres de Blois on 'Chaos and Complexity' [12]. 
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The Hamiltonian is given by 

where king spins Si= i l  are situated on every lattice site, the sum runs over nearest 
neighbours only and the quenched ferromagnetic couplings are selected according to 

P(J?)=(I -p)6(J-,.)+pG(JV-l) (4) 

p being the bond concentration. Boltzmann's constant and the nearest-neighbour inter- 
action are both set to unity. The pure system has a second-order phase transition at 
TC(p=1)=2/ln (1 +2"') and, of course, T,(p=p,=1/2)=0. 

The correlation length, C(T,p), is given by [ l l ]  

5-'(T,p) =5T'(T,pJ + 5 ; ' ( 0 . ~ )  (5) 

where 57 and 5, are the thermal and percolation correlation lengths, respectively. At 
p = p c  the correlation length is given by just the thermal correlation length because the 
percolation correlation length is infinite. Below p., however, we have to take both 
correlation lengths into consideration; further, we have [ 131 

Er= CO e*vdT (6) 

5,- ( P c  -P)-"*. (7) 

where 161 50=0.22i0.01 and 

The cross-over exponent [ 141 is predicted to be 1 and, as a consequence, we can identify 
[6, 151 vr= v,4/3. 

We consider Metropolis dynamics [16] in which the spins are updated according to 

W(S;-+-S,)=min{l, exp(-AE/T)} (8) 

where AE is the energy change involved. 
We adopt the real-space renormalization group technique of Harris and Stinch- 

combe 121. In this approach one considers a honeycomb lattice with configurational 
disorder and replaces it with a similar lattice dilated by a scale factor b=2. (121 should 
be consulted for further technical details.) After n iterations, the average relaxation 
time for a domain wall to traverse a renormalized bond is given by [2] 

TAY- [ " I  . 
If c7<<cp, the iterations stop at b"-cr and we obtain 

In rAV=~(ln 5Tl2+~( ln  Er) (10) 

withA =1/2vTln b,andB= l/ZvT( +corrections). Equation(lO)is,ofcourse,identical 
to the form obtained at pc  (see equations (1) and (2)). 

If cT>>[,, the iterations stop at b"-e, and we get instead of equation (10) that 
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Both limits, gT<<& and CT>>&., can be obtained from 

zAV=A(x)(ln CT)’+B(x)(h C T )  (12) 
where x= In cp/h er and the functional dependence of A and B has been indicated 
explicitly. The two scaling functions, A(x) and B(x),  are such that 

for x+ CO 

for xcc 1 

and 

We now discuss the results of Monte Carlo simulations of the bond-diluted two- 
dimensional king model on .a square 64 x 64 lattice. 

For any given p and temperature, T, the nearest-neighbour interactions are chosen 
according to equation (4). Periodic.boundary conditions are imposed throughout this 
work. The spins are all pointing up at the start and we perform a conventional Monte 
Carlo simulation [I71 of the system using the transition probability given in equation 
(8). The data presented here were collected over the ranges 0.25QTS1.2 and 
0.1 GpGO.3, and have heen averaged over many samples (50-10 000). 

The key quantity studied in the simulations is zAv, the average relaxation time, 
which is given by 

zAV= som C(t) dt (15) 

and here C(t) =N-’ Zj Sj(to)S,(t + to), where to is an initial time, t > to and, in this Rarticu- 
lar situation, N=4096. We choose to so that to> zo, the equilibration time of the system. 

In figure 1 we show a log-log plot of TAY against gT for various values of bond 
concentrations over the range (0.74n tTG9.2) ;  note that the thermal correlation 
length has been determined from equation (6) .  Throughout our simulations we have 
min( tT, &)<<the linear sue of the lattice. Consequently, our results are not expected 
to be influenced by kite-size effects. 

Clearly, for each value of p ,  the divergence of In TAV falls into two regimes: an 
initial nonhear divergence and an apparently linear divergence, providing tT is 
sufficiently large. To see if the initial divergence is indeed quadratic as predicted by 
equation (IO), we show a magnified plot of the data for 0.7<h tT$2.3 in figure 2. 
(For clarity, we have omitted the data for p=0.3) .  The best overall quadratic fit in 
each case is also displayed, It should be remembered that whereas equation (10) is only 
valid for tT<<<;, the aata shown in figure 2 also include those for CT-Cp.  As a conse- 
quence. one should not be too surprised by the deviations from the quadratic fits, 
especially for moderately large bond concentrations. Further, it is clear from equation 
(12) that we expect the quadratics in question to have coefficients A(x) and B(x)  which 
vary with the ratio In cp/ln CT( = x ) .  In figure 3 we plot the coefficients of the quadratic 
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Figure 1. A plot of In rAY against In er for various 
bond concentrations p :  e, p=O.I; +, p=O.l5;r,  
~ ' 0 . 2 ;  O,p=O.25: x,p=O.3. 

0 6  0.9 /.z 1 5  i.n 1 7  i b  
hl, 

Figwe 2. A m@ed plot of In 7 , ~  against In <r 
for 0.7$1n&<2.3. The best quadratic fit in each 
caseisalsoshown. .,p=O.I; +,p=0.15; *,p=0.2; 
O,p=O.25. 

Figure 3. A plot of 4.4 against x. Also shown are 
the values of the coefficients of the quadratic terms 
for the fits shown in figure 2. (See text.) 

Figure 4. A magni6ed plot of In rAV against In Cr  
for 2.4Sln cr49.2. The best linear fit in each case 
is also shown. er p=O.I; +, p=O.15; 1, p-0.2; 
U,p=0.25. 
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Table 1. Values of the gradients of the linear fits shown in figure 4 and,the corresponding 
term in equation (11). (See text.) 

P 0.1 0.15 0.2 0.25 
Gradient 1.41 1.24 1.50 1.84 

In &/vrln b 1.32 1.51 1.74 2.00 

Table 2. Values of x ( p )  at the crossover as determined from figure 1 

P 0.1 0.15 0.2 . 0.25 0.3 

Y ( p )  0.24 ~ 
0.30 0.31 0.40 0.50 

terms against x for the fits shown in figure 2,,the range of x values in each case being 
determined by the range over which each fit is valid. Also shown in figure 3 is the 
predicted form of A ( x )  as determined by equation (13). Clearly, our numerical values 
are in good qualitative agreement with the theory. The quantitative discrepancy can be 
understood by the reservations outlined above. 

In the other regime, namely tT>>Spr we expect equation (11) to hold. In figure 4 
we show a magnified plot of the data for 2.4Sln trS9.2. Here the divergence of In zAv 
is evidently linear as predicted. The line of best fit in each case is also shown and the 
gradients are given in table 1. These should be compared with the theoretical values 
which are also given in table 1. 

The crossover between the two regimes occurs at x"(p) (where ~ = l n ~ , / l n < ~ ) ,  
which, as determined from figure 1, would appear to be a monotonically increasing 
function of p (see table 2). 

To conclude, we have studied the critical dynamics of the diluted two-dimensional 
king model below the percolation threshold. We have shown that there is a crossover 
at x'(p) from a concentration-dependent behaviour for tr>><, to a percolating lattice 
type behaviour for tT<ct, ; x'(p) would appear to be a monotonically increasing func- 
tion of p .  Furthermore, the dynamical exponents A and B are actually the limits of 
dynamical functions A ( x )  and B(x),  respectively. Our numerical results are consistent 
with the theory. 

The simulations were performed on the AMT-DAF' at Queen Mary and Westfield 
College (London University). The Science and Engineering Research Council of Great 
Britain is gratefully acknowledged. 
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